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We present an exact field theoretical representation of the statistical mechanics

of classical hard-core Coulomb systems. This approach generalizes the usual

sine-Gordon theory valid for point-like charges or lattice systems to continuous

Coulomb fluids with additional short-range interactions. This formalism is

applied to derive the equation of state of the restricted primitive model of ele-

ctrolytes in the low fugacity regime up to order r5/2 (r number density). We

recover the results obtained by Haga by means of Mayer graphs expansions.
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I. INTRODUCTION

The aim of this paper and of the following one is to present a formally

exact field theory which allows for the calculation of thermodynamic func-

tions of classical hard-core Coulomb systems. It is well known that the

grand-canonical partition function of the Coulomb gas can be represented

by a sine-Gordon action. (1–3) However this mapping is applicable only for

pointlike charges, or for lattice systems. (4) If necessary, the short-range

repulsion is frequently included post-facto by introducing a suitable cutoff

in momentum space integrals. In this work, we derive a formally exact sine-



Gordon field theory whitout the use of any arbitrary cutoff. This off-lattice

formalism is used in two complementary directions. In the present paper

we recover the low fugacity expansion of the thermodynamic functions

obtained years ago by Mayer (6) and Haga (7) by means of graph resumma-

tion techniques. In the companion paper, we consider rather the high tem-

perature regime and the results obtained by Stell and Lebowitz (12) in the

frame of the so-called c-ordering theory are also recovered.

The simplest sound theory of electrolytes is due to Debye and

Hückel (5) who showed, nearly eighty years ago, that, at least in the low

density limit, the potential of mean force k12(r) between two ions of res-

pective charges e1 and e2 behaves like e1e2 exp(−or)/r as rQ. rather than

like the Coulomb potential itself e1e2/r, where o=(4pb ;i rie
2
i)
1/2 is the

inverse Debye shielding length. Here b=1/kT (k Boltzmann constant, T
temperature), ri is the density of ionic species i and the dielectric constant

D of the solvent has been absorbed in the definition of the charges. An

important consequence of the shielding effect is the non-analyticity of the

specific excess osmotic free energy f(r) as a function of the mean ionic

density r. Actually, in Debye–Hückel theory one obtains f(r) ’ o3 ’ r3/2

for rQ0.
The results of Debye and Hückel are valid only at very low densities

and discrepancies between their theory and experimental data on real elec-

trolytes have motivated an enormous amount of theoretical works to

improve the theoretical scheme. A first systematic pertubative expansion of

f(r) in which the density r is taken to be the ordering (small) parameter

was proposed by Mayer. (6) Improvements on this seminal work were made

later by Haga, (7) Meeron, (8) Abe, (9) and Friedman. (10) All these works are

based on diagrammatic techniques and the more elaborate of them provide

a reasonably accurate description of the thermodynamic properties of ionic

solutions in the low fugacity regime. A monography by Friedman (11) sum-

marizes the above-mentioned works.

In a more recent work, (12) Stell and Lebowitz have proposed a per-

turbation scheme in which the ordering parameter is c=be2 where e is the

electron charge. Their theory is also based on a sophisticated diagrammatic

analysis which gives an explicit high temperature expansion of f(r) for

symmetric and asymetric electrolytes.

Edwards (1) seems to have been the first to use the so-called sine-

Gordon (SG) transformation in the field of the statistical mechanics of

classical Coulomb systems as an alternative to the above-mentioned

diagrammatic techniques although Kac, (2) Siegert, (3) Hubbard, (13) and

Stratonovich (14) also pioneered the method in other domains of statistical

physics or in field theory. In his work, Edwards considers a model of

charged hard spheres which allows a clear splitting of the pair potential
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into a long range electrostatic part for which the sine-Gordon transforma-

tion applies and a repulsive part for which low density virial expansion

techniques can be employed. This leads to an intricate double expansion in

c and in r. The sine-Gordon formalism for both classical and quantum

Coulomb systems has been reviewed recently by Brydges and Martin. (15)

A decade later, Hubbard and Schofield (16) have shown that a general

fluid Hamiltonian with long-range and short-range interactions can be

mapped onto a reference system with short-range interactions only. Then

the cumulant expansion is used to map the original fluid Hamiltonian onto

a magneticlike Hamiltonian. Brilliantov and al. (17) have explored this route

for ionic fluids in order to study the Coulombic criticality. The equation of

state of a multicomponent system of pointlike ions embedded in a

neutralizing background has also been studied by Ortner (18) along these

lines. Recently Netz and Orland (21) tried to improve on Edwards theory by

performing a double SG transform, both on the Coulomb and the hard

core parts of the pair potential. As stressed by Brydges and Martin (15) a SG

transform of the singular hard core potential and more generally that of a

repulsive short range potential such that ’ 1/r12, is strictly speaking

impossible, since these singular potentials do not have a Fourier transform.

The present work is along the lines of the papers of Brilliantov,

Ortner, Netz and Orland. We limit ourselves to the case of a symmetric

fluid of charged hard spheres with only two species of ions of equal diame-

ters s and carrying opposite charges (the so-called restrictive primitive

model (RPM) of electrolytes (6)). In a first step, we regularize the Coulomb

potential by a smearing of the charges over the surface of a sphere of dia-

meter a [ s, and therefore give a precise meaning to the SG

transformation. (15, 19) Obviously other kinds of smearing are possible and

would lead to the same results; in another context an uniform volumic

smearing of the charge has been proposed. (20) This allows us to derive

rigorously a result which seems to belong to Siegert (3) in the general case

and which states that the grand-partition function of charged hard spheres

is equal to the average over a Gaussian measure of the grand-partition

function XHS of bare hard spheres in the sine-Gordon field. This is our Eq.

(2.10). In a second step, making a connection with liquid theory, (22) we

perform a functional expansion of ln XHS with respect to the sine-Gordon

field f which yields the exact expression (2.14) of the sine-Gordon action

S[f] of the model. This action involves the connected correlation func-

tions of the hard sphere fluids which are supposed to be known. It can be

checked that this action reduces to the usual sine-Gordon action in the

limit of vanishing hard-core diameters. This formalism is very handy since

it allows to obtain either low fugacity or high temperature expansions of

f(r) via cumulant expansions for off-lattice Coulombic systems.
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The paper is organized as follows. In Section II, we derive the

generalized sine-Gordon representation of the grand-partition function of

the RPM model. The low-density expansion of the grand potential (or

pressure) of the model is obtained in Section III up to the order r5/2. We

check that each term of this expansion is actually independent of the

smearing diameter a. Comparisons with the results of Haga and of Netz–

Orland are carried out in Section IV. All approaches yield identical results

at order r5/2. In addition we explain why the approximate derivation of Netz–

Orland leads to the correct result at this order but could fail at higher

orders in r. Conclusions are drawn in Section V.

II. MODEL AND FORMALISM

A. The Boltzmann Factor

Throughout this paper we consider the three dimensional (3D) and

symmetric version of the RPM, i.e. a system made of N+ hard spheres of

diameter s and charge e and N− spheres of the same diameter but with an

opposite charge −e. (11)

With obvious notations, the configurational energy of the model reads

as

bV(rFN+, rFN−)=
b

2
C
i ] j 1

eiej
rij

+vhs(rij)2 , (2.1)

where ei= ± e and vhs(r) denotes the hard core potential. For the moment

the ions are supposed to be confined in some arbitrary volume V … R3.

We first note that only configurations (rFN+, rFN−) of ions without

overlaps of the spheres do contribute to the canonical (or grand-canonical)

partition functions. For these configurations, the charge ± e of any ion of

center rFi can be smeared out uniformly on any spherical surface of diame-

ter 0 < a [ s. The interaction energy of two balls of charge density y(r)=
d(r−a/2)/(pa2), located respectively at point rF and rFŒ will be noted

Wy(rF−rFŒ) and we have obviously

Wy(rF−rFŒ)=F
V
F
V

d3xFd3yF y(|rF−xF|)
1

|xF−yF|
y(|yF−rFŒ|) . (2.2)

We note that the self-energy ES — Wy(0)/2=1/a of each spherical

distribution is a finite quantity for a > 0.
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It follows from the preceding remarks that the electrostatic part of the

Boltzmann factor can be written, for any configuration (rFN+, rFN−), as

exp 1−
b

2
C
i ] j

eiej
rij 2

=exp(NcES) exp 1−
c

2
On| Wy |nP2 . (2.3)

where c — be2 and N=N++N− is the total number of ions. In Eq. (2.3)

n(rF) — C
N+

i=1
d(rF−rFi+)−C

N−

i=1
d(rF−rFi−) (2.4)

is the microscopic charge distribution (divided by e) and

On| Wy |nP — F
V
F
V

d3rFd3rFŒn(rF) Wy(|rF−rFŒ|) n(rFŒ). (2.5)

Note that it follows from the positivity of the Fourier transform W̃y(kF)=
4pỹ(k)2/k2 that the quadratic form On|Wy |nP is definite positive. We can

take advantage of this positivity to perform a SG transform (15) and re-

express the Boltzmann factor (2.3) as an average over a Gaussian scalar

field f, i.e.

exp 1−
c

2
On| Wy |nP2=7exp 1i FV d3xF n(xF)f̄(xF)28Wy

=7exp 1i C
N+

i=1
f̄(rFi+)−i C

N−

i=1
f̄(rFi−)28Wy

, (2.6)

where f̄(xF) — `c f(xF) is a real random field. The precise meaning of the

average in Eq. (2.6) is given in Appendix A.

B. Grand Partition Function

For reasons which should become clear below, the grand-canonical

ensemble is considerably more handy than the canonical one. For simpli-

city we choose the same chemical potential m — m+=m− for the anions and

the cations (15). The grand-canonical partition function is given by (22)

XRPM(n+, n−) — C
.

N+=0
C
.

N−=0

zN+

(N+)!
zN−

(N−)!
F
V

d3rFN+d3rFN− exp(−bV(rFN+, rFN−)).

(2.7)

Sine-Gordon Theory for the Equation of State 757



where we have introduced the usual notation n — n± =bm and the activity

z — z± =L−3 exp(bm) of both species (the thermal length L is assumed to

be the same for the anions and the cations).

Gathering the intermediate results (2.3), (2.6) we get :

XRPM(n+, n−)= C
.

N+=0
C
.

N−=0

z̄N+

(N+)!
z̄N−

(N−)!
F
V

d3rFN+d3rFN− exp 1− C
i < j

vhs(rij)2
(2.8)

×7exp 1+i C
N+

i=1
f̄(rFi+)−i C

N−

i=1
f̄(rFi−)28Wy

. (2.9)

where we have defined renormalized chemical potentials n̄± — n± +be2ES=
n+c/a and renormalized activities z̄ — z̄± =exp(n̄± )/L3.

This last equation can be elegantly rewritten as

XRPM(n+, n−)=OXHS
+, −(n̄+, n̄−; if̄, −if̄)PWy , (2.10)

where XHS
+, −(n̄+, n̄−; if̄, −if̄) denotes the grand-canonical partition func-

tion of a mixture of two species of equal size hard spheres labelled + and

− with chemical potentials n̄+ and n̄− respectively. The spheres with the

label + are in the external field if̄ whereas those labelled − are in the field

−if̄. Eq. (2.10) is a special case of a more general result due to Siegert. (3)

In order to get a more explicit expression of the action we perform

now a Taylor functional expansion of ln XHS
+, − with respect to the activity

z̄± (rF) — z exp(c/a) exp( ± if̄(rF)).
We have, from standard liquid theory (22)

ln 1
XHS
+, −(n̄+, n̄−, V, b; if̄, −if̄)
XHS
+, −(n, n, V, b) 2

=C
.

n=1

1
n!

C
a1 · · ·an=±

F
V

d31 · · · d3n
dn ln XHS

+, −

dz̄a1(1) · · ·dz̄an(n) : z̄ai(i)=z
D
n

i=1
(z̄ai(i)−z),

(2.11)

In the absence of an external field, we have, for sufficiently large

systems XHS
+, −(n, n)=XHS(n0) , where n0 — n+ln 2 (i.e. z0=2z) and XHS(n0)

is the grand partition function of a fluid of identical hard spheres. The

integral kernels in Eq. (2.11) are related to the correlation functions

h (n)0 (1, · · · , n) of the hard sphere mixture (22)

zn
dn ln XHS

+, −

dz̄a1(1) · · ·dz̄an(n) : z̄ai(i)=z
=
rn0

2n
h (n)0 (1, · · · , n) . (2.12)
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In Eq. (2.12), r0=V−1
“ ln XHS/“n0 is the number density of this fluid.

Making use of of the identity

C
ai=±

z̄ai(i)−z
2z

=exp(c/a) cos f̄(i)−1 (2.13)

we can rewrite Eq. (2.11) as a functional integral

XRPM(n+, n−)
XHS(n0)

=Oexp(−U[f])PWy=N−1
W F Df exp(−S[f]), (2.14)

where NW — > Df exp(−1
2 Of| W−1

y |fP) is a normalization constant and

S[f]=1
2 Of| W−1

y |fP+U[f], (2.15)

U[f]=C
.

n=1
Un[f],

Un[f]=−
rn0

n!
F
V

d31 · · · d3nh0(1, ..., n) D
i=1, n

[exp(c/a) cos f̄(i)−1]. (2.16)

The above expression of the sine-Gordon like action S[f] of the RPM is

an exact result; note that S[f] is an even function of the field. In the limit

sQ0 only the term n=1 of Eq. (2.16) survives and one checks that one

recovers the usual sine-Gordon action of the Coulomb gas. (15)

A similar result along the Hubbard-Schofield scheme has been used by

Brilliantov and al. (17) in their study of the criticality of the RPM model.

However their approach is developed in Fourier space and without the

explicit regularization obtained with the smearing of the charges. As a final

remark, we note that we might have been tempted to perform the Taylor

functional expansion, not around z but around z̄± =z exp(c/a). In that

case a low-fugacity expansion is valid only at high temperatures since z̄ ’ z
requires cQ0.

C. The Generalised Screened Potential X y(r)

The program is now to perform a systematic cumulant expansion of

the expression (2.14) and to compute the cumulants by an extensive use of

Wick’s theorem. (29, 30) However, as it stands, this expansion will involve

cumulants which diverge in the thermodynamic limit due to the long range

of Wy(r). The same problem arises in low fugacity or high temperature

diagrammatic expansions of the RPM where one is led to resum classes of

diagrams in order to get finite results. (6, 12, 22) Formally it amounts to intro-
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duce a screened (Yukawa) potential. In the field theoretical formalism dis-

cussed here, a screened (or Hartree (31)) field can also be introduced as

follows. We denote U0[f] the high temperature approximation of U[f],
i.e.

U0[f]=
r0

2
F d3rFf̄(rF)2 . (2.17)

Writing now the triviality U[f]=(U[f]−U0[f])+U0[f], we get

Oexp(−U[f])PWy=
NX

NW
Oexp(−(U[f]−U0[f]))P, (2.18)

where NA — > Df exp(−1
2 Of| A−1

y |fP) with A=Xy, Wy and where Xy(r) is a
real operator defined by the relation Xy(r)−1 — Wy(r)−1+r0cI (I denotes

the identity).

Using the precise definition of the functional integration given in

Appendix A, we obtain

NX

NW
=exp 1−

V
2
F

d3qF
(2p)3

ln(1+cr0W̃y(qF))2 , (2.19)

Note that, in Eq. (2.19), we have replaced a series by an integral,

which is valid for large systems. Moreover the integral converges for a ] 0,
which is a happy consequence of the regularization of the Coulomb poten-

tial via the smearing of the charge.

The Fourier transform X̃y(q) reads :

X̃y(q)=
W̃y(q)

1+cr0W̃y(q)
=
sin2(qa/2)

(qa/2)2
4p

q2+o20
sin2(qa/2)

(qa/2)2

. (2.20)

with o20=4pcr0.
It is easily checked that for a fixed o0 and in the limit aQ0, Xy(r)

reduces to the familiar screened Yukawa potential, i.e. Xy(r) ’ exp(−o0r)/r
(-r). Conversely, for a fixed a and in the limit o0Q0 we have obviously

Xy(r)=Wy(r). For arbitrary (a, o0), the large r behavior of Xy(r) is deter-

mined by the small q behavior of X̃y(q) ’ 4p/(q2+o20) which implies Xy(r) ’
exp(−o0r)/r at large r. The function Xy(r) is thus a short range function of

r which, however, for large o0, can have a non monotoneous behavior.

Expansions of Xy(r) at low o0 will be given in Section III.
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We shall see in the next Section that the use of the screened potential

Xy(r) instead of the long range (Coulombic) potential Wy(r) ensures the

convergence of the cumulants.

III. LOW-FUGACITY EXPANSION

In this section, we use the general result of Eq. (2.14) to perform a

systematic low-fugacity expansion of the pressure of the RPM model, at

the order 5/2 in the density r.

Although this theory must not depend explicitely of the smearing

parameter a, we shall explicitely verify below that it is effectively the case

for each order of the expansion.

A. The Grand Potential

Using the results of Eqs. (2.14), (2.18), (2.19), and the cumulant

theorem (30) we obtain the specific grand potential wRPM — −ln XRPM/V

wRPM(n)=wHS(n0)+
1
2
F

d3qF
(2p)3

ln(1+cr0W̃y(q))−
1
V

C
.

n=1

(−1)n

n!
OHn[f]PXy, c.

(3.1)

where H[f] — U[f]−U0[f] and O · · ·PXy, c denotes a cumulant average.

Since we are interested in a low-density expansion, we keep only the

first two terms U1 and U2 of the series (2.16), which is equivalent to take

into account all contributions with one and two point correlations func-

tions. Then, H[f]=U1[f]+U2[f]−U0[f], and the grand potentiel can

be recast in the following form :

wRPM(n)=wHS(n0)+w1+w2+O(r30) , (3.2)

with the following definitions:

w1 —
1
2
F

d3qF
(2p)3

ln(1+cr0W̃y(q)) , (3.3)

w2 —
OHPXy

V
−
OH2PXy−OHP2Xy

2V
. (3.4)

The well-known HS contribution is given by :

wHS(n0)=−r0−
2p
3
r20s

3+O(r30) . (3.5)
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w1 is a generalization, when smearing is taking into account, of the

familiar DH expression of the free energy. Notice that, unlike the point-like

DH approach, the integral (3.3) which defines w1 is convergent at large k
(within the conventional theory, an infinite self-energy must be substracted

to recover finite results). Since it includes W̃(q), w1 is a function of a (and

o0); its expansion in powers of o0 is given in Appendix B and reads :

1
2
F

d3qF
(2p)3

ln(1+cr0W̃y(q))−
r0c

a
=−

2`p

3
r3/20 c

3/2+
7pa
15
r20c

2

−
p`p a2

3
r5/20 c

5/2+O(r30). (3.6)

The first term recast in the form −o30/12p is reminiscent of the familiar

DH contribution to the free energy.

w2 contains averages over the gaussian field f̄ which can be obtained

from application of Wick’s theorem; the detailed calculation is reported in

Appendix C and one finds

w2=−
cr0

a
−
r0D0

2
+r0[1−exp(−D0/2)]

−
r20

4
[1−exp(−D0/2)]2 F drFk2y(r)

−
r20

2
[1−exp(−D0/2)]2 h̃0(0)+

r20

4
exp(−D0) F

r < s
drFk2y(r)

−
r20

2
exp(−D0) C

.

n=2
F
r > s

drF
k2ny (r)
(2n)!

. (3.7)

where h̃0(0) denotes the 3D Fourier transform of h (2)0 (r). We have intro-

duced in this last expression the dimensionless potential ky(r) — cXy(r) and
the quantity D0 — ky(0)−2c

a . Expansions of ky(r) and D0 at low o0 are given
in Appendix B

D0 — ky(0)−
2c
a

=c 5−o0+
7

15
o20a−

5
24
o30a

2+O(o40)6 , (3.8)
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while

ky(r)=
2c
a

−
c

a2
r−co0+O(o20) for r < a, (3.9)

ky(r)=cq20
exp(−o0r)

r
+O(o20) for r > a. (3.10)

with q0=2 sinh(o0a/2)/(o0a).
Using (3.8), (3.9) and (3.10) each contribution to (3.7) can be easily

expanded in powers of r0. The first two terms give

−
r0D0

2
+r0[1−exp(−D0/2)]=−

p

2
r20c

3−
p`p c9/2r5/20

6

+
14p`p c7/2r5/20 a

15
+O(r30). (3.11)

The prefactor of the third term is r20[1−exp(−D0/2)]2=pc3r30+O(r7/20 )
and the integral must be splitted into two components :

F
r < s

drFk2y(r)=1
32pc2a

15
−

20p`p c5/2r1/20 a2

3 2
+4pc2(s−a)+8p`p c5/2r1/20 (a2−s2)+O(r0), (3.12)

F
r > s

drFk2y(r)=
`p c3/2

r1/20
+O(1). (3.13)

Notice that the last integral is singular in r0 when r0 Q0. Consequently the

term under investigation will contribute at the order r5/20 .

The expansion of the prefactor r20 exp(−D0) is straightforward

r20 exp(−D0)=r
2
0+2`p c3/2r5/20 +O(r30), while >r > s drFk2ny (r) for n \ 2 is

related to the exponential integral function En(z)=>.1 dt exp(−zt) t−n.
Indeed one finds

C
.

n=2
F
r > s

drF
k2ny (r)
(2n)!

=4ps3 C
.

n=2

(c/s)2n q4n0
(2n)!

E2n−2(2no0s)

=4ps3 C
.

n=2

(c/s)2n

(2n)! (2n−3)
+c4

2po0
3

(cE+ln(4o0s)−1)

−4ps3o0c C
.

n=2

(c/s)2n+1

(2n+1)! (2n−2)
+O(r0) (3.14)
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where the last equality is obtained with the help of the series representation

of the exponential integral function (32).

Gathering all these results, it can be checked that all contributions

involving the smearing diameter a exactly cancel each other and that we

indeed obtain a result independent on a; more precisely we get

wRPM(n)=−r0−
2`p

3
r3/20 c

3/2−r20 1
2ps3

3
−pc2s+

p

2
c3+2ps3S(c/s)2.

−
p`p c9/2r5/20

12
[8cE−3+8 ln(8`p c1/2s)]

+2p`p c7/2r5/20 s−2p`p c5/2r5/20 s
2

−4p`p c3/2r5/20 s
3[S(c/s)−T(c/s)]

−
p`p c9/2

3
r5/20 ln(r0)+O(r3). (3.15)

where we have introduced the two following series

S(c/s) — C
.

n=2

(c/s)2n

(2n)! (2n−3)
,

T(c/s) — C
.

n=2

(c/s)2n+1

(2n+1)! (2n−2)
. (3.16)

B. Pressure of the RPM Model

In this section we derive the pressure for low density systems at

arbitrary temperatures. In order to obtain these quantities, we must first

performed a transformation from the density r0 (corresponding to the

chemical potential n0) to the activity z of the model. For that purpose we

use the relation:

r0=−z0
“wHS(n0)
“z0

=z0−
4ps3

3
z20+O(z30)=2z−

16ps3

3
z2+O(z3). (3.17)

764 Caillol and Raimbault



Inserting (3.17) in (3.15) we get the expression of wRPM as a function of

z and c

wRPM(z, c)=−2z−
4`2p c3/2

3
z3/2+4ps31

2
3

+1
c

s2
2

−
1
2 1
c

s2
3

−2S(c/s)2 z
2

+z5/24`2 p3/2 1−
c9/2

12
(8cE+8 ln(8`p c1/2s)−3)

+2c7/2s−2c5/2s22

+z5/2
16`2 p3/2c3/2s3

3
(1−3[S(c/s)−T(c/s)])

−z5/2 ln(2z)
4`2 p3/2c9/2

3
+O(z3). (3.18)

The density of the system is obtained by the relation r=−z“wRPM(z)/
“z which is easily inverted and reads

z=
r0

2
−
`p c3/2

2
r3/20 +ps31

2
3

+1
c

s2
2

+
1
4 1
c

s2
3

−2S(c/s)2 r
2
0

+r5/20 p
3/2

1−
c9/2

12
(10cE+10 ln(8`p c1/2s)−7)−c7/2s−

5c5/2s2

2 2

+r5/20 p
3/2c3/2s3 1−

2
3

+2S(c/s)+5T(c/s)2−r
5/2
0 ln(r0)

5p3/2c9/2

12
+O(r30).

(3.19)

Using this last equation in (3.18) we obtain the pressure bPRPM —

−wRPM(r, c) of the RPM model

bPRPM=r−
`p c3/2

3
r3/2+s31

2p
3

+p 1
c

s2
2

−2pS(c/s)2 r
2

−1p`p c
9/2

1−
2
3

+cE+ln(8`p c1/2r1/2s)2
+3p`p c5/2s2−6p`p c3/2s3T(c/s)2 r

5/2

+O(r3) (3.20)
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which can be recasted in the following form :

bPRPM=r−
o3

24p
+

2ps3

3
r2+
o4s

16p
−2pr2s3S(c/s)

−
oo42

512p3 1−
2
3

+cE+ln(4os)2−
3o5s2

32p

+
3
4

(4pc)3/2 s3r5/2T(c/s)+O(r3) (3.21)

with o22 — 4pco2 and o2=4pcr, the square of the usual inverse DH length.

S(c/s) and T(c/s) are defined by Eq. (3.16).

IV. DISCUSSION

In this section we briefly compare the results obtained above with the

classical diagrammatic results of Haga (7) and with the field theoretical

approach of Netz–Orland. (21) It will be shown below, as expected, that

these three different routes yield the same result.

Haga’s expression for the equation of state (Eq. (29) of ref. 7) is easily

compared with Eq. (3.21); both results coincide except for the terms pro-

portionnal to o5 which differ by a factor of 1/2. In a recent paper by

Bekiranov and Fisher, (33) a slip in Haga’s Eq. (25.4) was noted by these

authors who pointed out that the last term of Haga’s equation should read

o5a2/16p instead of o5a2/32p. When this correction is taken into account

Haga’s results and ours are identical.

In their paper, (21) Netz and Orland do not compare explicitely their

results with those of Haga. This can be done by confronting our expression

of the grand potential in terms of the fugacity (cf. Eq. (3.18)) with Eq. (22)

of ref. 21. Their results are given in terms of the hyperbolic sine-integral

function Shi(c/s) and of the incomplete Gamma function C(0, c/s). As

shown in Appendix D these functions can be reexpressed in terms of the

series S(c/s) and T(c/s) defined by Eq. (3.16) and it appears that the two

results coincide. Let us now explain, why the approximate theory of Netz

and Orland gives the correct result at this order. Recall that these authors

also perform a Hubbard-Stratonovich transformation on the singular hard-

core potential. The associate random field is denoted k(r) and the follow-

ing average is needed (Eq. (12) of ref. 21)

Oh(1) h(2)P=exp(−w(12)) (4.1)
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where h(r) — exp(−ik(r)+w(0)/2) and w(r) denotes the hard-core poten-

tial. Two consequences result from Eq. (4.1). On the one hand, as noted by

the authors, exp(−w(12)) (contrary to w) is finite, which regularizes the

theory. On the other hand, since exp(−w(r))=1−h(r−a) (h is the Heavi-

side function), this procedure amounts to incorpore hard-core effects only

at the level of the second virial coefficient. It appears (see Eqs. (C12, C13)

of Appendix C), that this approximation is sufficient for an expansion up

to r5/2 but will miss some contributions at the next order.

V. CONCLUSION

In conclusion we have proposed in this work a formally exact field

theory for hard-core Coulomb systems. This approach generalizes the usual

sine-Gordon theory valid for pointlike charges to realistic Coulomb fluids

with additional short range interactions. Within this formalism we derive

the equation of state of the RPM model up to r5/2. Our results confirm the

classical diagrammatic expansions of the Mayer–Haga diagrammatic

theory. Going to next order is perhaps not out of reach although there is a

delicate analysis of the relevant contributions to the cumulants to perform.

Note that an equation of state for pointlike ions as been recently obtained

by Ortner (18) using the Hubbard–Schofield approach, up to the r3 contri-

bution. In this latter case, however, the reference system is the ideal gas

system which, in turn, greatly simplify the calculations. In the companion

paper, we derive an equation of state of the RPM in the high temperature

regime, at any density, by using the formalism developed in the present

paper. This two complementary limits show the ability of our formulation

to tackle in a coherent way the equation of state of Coulomb systems.

Another problem, which remains a challenge to theory, is the under-

standing of ionic criticality (34). We believe that our formalism might be used

to give some insights upon these interesting questions. Work in that direc-

tion is currently in progress.

APPENDIX A: FUNCTIONAL INTEGRATION

For any operator of the real field f(rF) we define the average OA[f]PWy
by the following relation

OA[f]PWy= F DfPWy[f] A[f], (A1)
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where >Df denotes a functional integration and the Gaussian weight

PWy[f] is defined as

PWy[f]=
exp(−1

2 Of| W−1
y |fP)

> Df exp(−1
2 Of| W−1

y |fP)
. (A2)

In order to give an unambiguous definition of the measure Df and thus a

precise meaning to the SG transform we henceforth consider a cubic

volume V=L3 with periodic boundary conditions (PBC). The 1/r Coulomb

potential which enters the configurational energy (2.1) of the RPM must

therefore be replaced by the Ewald potential (24–27)

E(rF)=
4p
L3 C

qF ] 0F

exp(iqF · rF)
qF 2

, (A3)

where qF=2pnF/L (nF — (nx, ny, nz) ¥ Z3) is a vector of the reciprocal lattice.

Recall that E(rF) is the periodic electrostatic potential of a point charge

embedded in a uniform neutralizing background which kills the term qF=0F
in the series (A3). (27, 28) This causes a (hopefully) slight difficulty since

configurations with N+ ] N− are associated with the presence of a

background which ensures the electric neutrality of the system. The perio-

dical system considered here is therefore slightly different from the usual

RPM; however, this should make no difference in the thermodynamic limit.

Assuming PBC we thus have (29)

F Df —D −

qF F
+.

−.
df̃RqF F

+.

−.
df̃IqF , (A4)

where f̃RqF and f̃IqF denote respectively the real and imaginary parts of the

Fourier component

f̃qF=F
V

d3rFf(rF) exp(−iqF · rF) (A5)

of the real field f. The infinite product in Eq. (A4) runs over the vectors

qF ] 0F of the reciprocal lattice. In fact, since, due to the reality of the field f,

f̃qF=f̃
g
−qF, only half of the vectors has to be considered, for instance those

with nx \ 0. (29) That is what is meant by the subscript ’ in Eq. (A4).

APPENDIX B: LOW o0 EXPANSIONS

In this Appendix, we give the calculation of the expansions of D0, ky(r)
and w1 with respect to o0.
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1. Let us begin with D0 ; we recall that D0 — ky(0)−2c/a where

ky(0)=cXy(0). Using Eq. (2.20) we get

Xy(0)=F
d3qF

(2p)3
X̃y(q)=

2
pa

F
+.

−.

sin2 x

x2+t20
sin2 x

x2

dx

=
2
pa

F
+.

−.

sin2 x
x2+t20

1
1+n(x)

dx, (B1)

where the dimensionless parameter t0=o0 a/2 and the function

n(x)=
t20

x2+t20 5
sin2 x

x2 −16 (B2)

satisfies |n(x)| < 1-x. Therefore the fraction 1/(1+n(x)) in Eq. (B1) can be

replaced by its series representation which yields

Xy(0)=
2
pa

C
.

n=0
(−)n In(t0),

In(t0)=F
+.

−.

sin2 x
x2+t20

nn(x) dx, (B3)

where it should be noted that the integrals In(t0) in Eq. (B3) are entire

functions of t0. Consequently we get at order t30

Xy(0)=
2
pa

[I0(t0)−I1(t0)]+O(t40),

where I0(t0) and I1(t0) can be computed by means of the residue theorem

I0(t0)=
p

2t0
(1−exp(−2t0)),

I1(t0)=
p

16t30
(−9+8t0+(12+8t0) exp(−2t0)−(3+4t0) exp(−4t0))

−
p

4t0
+
p

2
exp(−2t0) 11+

1
2t02

. (B4)
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With the help of Mapple® one finds

Xy(0)−
2
a

=−t0+
14
15
t20−

5
6
t30+O(t40)=−o0+

7
15
o20a−

5
24
o30a

2+O(o40).

(B5)

from which we deduce Eq. (3.8).

2. The same method can be used for the expansion of Xy(r).

Xy (r)=F
d3qF

(2p)3
X̃y(q) exp(iqF · rF)=

1
pr

F
+.

−.

sin2 x sin(2xr/a)
x(x2+t20)

1
1+n(x)

dx.

(B6)

thus,

Xy(r)=
1
pr

F
+.

−.

sin2 x sin(2xr/a)
x(x2+t20)

dx+O(t20), (B7)

is a piecewise function defined for r > a by the expression

X <
y (r)=

1
2rt20 1

1−exp 1−
2r
a
t02−exp(−2t0) sinh 1t0

2r
a 22+O(t20)

=
2
a

−
r

a2
−o0+O(o20), (B8)

and for r > a by

X >
y (r)=

sinh2(t0)
t20

exp 1−
2r
a
t02

r
=
sinh2(o0a/2)

(o0 a/2)2
exp(−o0r)

r
+O(o20). (B9)

(B8) and (B9) are equivalent to (3.9) and (3.10).

3. We give now the expansion of w1. We have first

w1 —
1
2
F

ddqF
(2p)d

ln(1+cr0W̃y(q))=
2
p2a3 F

.

0
x2 ln 11+t20

sin2 x
x4 2 dx (B10)
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which can be written as the sum of three terms

w1=
2
p2a3

F
.

0
x2

5ln 11+
t20

x22−
t20

x2+t206
dx+

t20

p2a3
F
.

−.

sin2 x
x2+t20

dx

+
1
p2a3

C
.

n=2

(−)n−1

n
F
.

−.
x2nn(x) dx (B11)

The first integral of the last expression can be easily integrated by parts

with the result

F
.

0
x2

5ln 11+
t20

x22−
t20

x2+t206
dx=

pt30

6
. (B12)

Thus,

w1=
t30

3pa3+
1
p2a3 I0(t0)−

1
p2a3 F

.

−.
x2n2(x) dx+O(t60). (B13)

Using

F
.

−.
x2n2(x) dx=

p

16t0
[−9+8t0+(12+8t0) exp(−2t0)

−(3+4t0) exp(−4t0)]+
pt30

2

−
pt0

2
+pt0 exp(−2t0) 11+

1
2t02

. (B14)

we obtain

w1=
1
pa3 1t

2
0−

2t30
3

+
7t40
15

−
t50

3
+O(t60)2=

o20

4pa
−
o30

12p
+

7o40a
240p

−
o50a

2

96p
+O(o60),

(B15)

which is the result used in Eq. (3.6).
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APPENDIX C: COMPUTATION OF w2

In this section we give the expansion of w2 for low o0 . We have

w2 —
OHPXy

V
−
OH2PXy−OHP2Xy

2V
, (C1)

with H[f]=U1[f]+U2[f]−U0[f].
Each cumulant implies several averages over the field f(rF) which can

all bededuced fromthegeneral averageX — Ocos(l1f1) cos(l2f2) cos(l3f3)PXy
where l1, l2, l3 are real constants. Starting from

X=1
8 C
E1, E2, E3

Oexp(i(l1E1f1+l2E2f2+l3E3f3))PXy (C2)

=1
8 C
E1, E2, E3
7exp 1i F d3rFf(rF)(E1l1d(rF−rF1)+E2l2d(rF−rF2)+E3l3d(rF−rF3))28Xy ,

(C3)

where Ei= ± 1 and using the fundamental relation for Gaussian integrals

7exp 1i F d3rFf(rF) t(rF)28Xy
=exp 1−

1
2 F d3rF1d3rF2Xy(rF1−rF2) t(rF1) t(rF2)2 , (C4)

one gets

X=
1
8
exp 1−

Xy(0)
2

C
3

i=1
l2i2 CEi

exp(−l1l2E1E2Xy(12)

−l2l3E2E3Xy(23)−l1l3E1E3Xy(13))

=exp1−
Xy(0)

2
C
3

i=1
l2i2 (cosh(l1l2Xy(12)) cosh(l2l3Xy(23)) cosh(l1l3Xy(13))

−sinh(l1l2Xy(12)) sinh(l2l3Xy(23)) sinh(l1l3Xy(13))) (C5)

from which all useful formula can be obtained.
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It is convenient to recast the various contribution of w2 in the follow-

ing way

−OU0[f]PXy+OU1[f]PXy
L3 =−

r0D0

2
−r0[exp(−D0/2)−1]−

cr0

a
, (C6)

−
OU2

0PXy−OU0P
2
Xy

2L3 =−
r20

4
F drFk2y(r), (C7)

OU0U1PXy−OU0PXyOU1PXy
L3 =

r20

2
exp(−D0/2) F drFk2y(r), (C8)

OU2[f]PXy
L3 −

OU2
1PXy−OU1P

2
Xy

2L3 =−
r20

2
[1−2 exp(−D0/2)] h̃0(0) (C9)

−
r20

2
exp(−D0) F drF[g0(r) cosh(ky(r))−1]

(C10)

=−
r20

2
[1−exp(−D0/2)]2 h̃0(0) (C11)

−
r20

2
exp(−D0) F drFg0(r)[cosh(ky(r))−1].

(C12)

where D0 and ky(r) are given by Eq. (3.8), (3.9) and (3.10), and we have

introduced g0(r) — 1+h0(r).
At the lowest order in density the correlation function g (0)0 (r)=0 for

r < s and 1 otherwise; thus

F drFg (0)0 (r)[cosh(ky(r))−1]=
1
2
F drFg (0)0 (r) k2y(r)+C

.

n=2
F drFg (0)0 (r)

k2ny (r)
(2n)!

=
1
2
F drFk2y(r)−

1
2
F
r < s

drFk2y(r)

+C
.

n=2
F
r > s

drF
k2ny (r)
(2n)!

. (C13)

Gathering together the two precedent results, we obtain Eq. (3.7).
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APPENDIX D: COMPARISON WITH NETZ–ORLAND’S PAPER

In this Appendix we give some technical details allowing the compari-

son of Eq. (3.18) with the expression of the grand potential in terms of the

fugacity calculated by Netz and Orland.

Eq. (22) of Netz–Orland’s paper can be written in our notations

(lQ z, aQs)

−wRPM=2z−b3/2z3/2s3/2−b2z2s3−b5/2z5/2s9/2−bln 5/2z5/2s9/2 ln(zs3)− · · ·
(D1)

where

b3/2=−4
3`2p E3/2, (D2)

b2=−2pE3−
2p
3

(2E3 Shi(E)−cosh(E)[4+2E2]−2E sinh(E)) (D3)

b5/2=−
(2p)3/2

3
E9/2−2

(2pE)3/2

3 12E
3

5C(0, E)+2cE+
1
2
ln(128pE3)6

−2 exp(−E)[2−E+E2]−
59
12
E32 (D4)

bln 5/2=−2
(2pE)3/2

3
E3 (D5)

with E — c/s.
It can be easily checked that b3/2 coincides with our coefficient in

Eq. (3.18). b2 is recovered using the following identity

E3 Shi(E)−E2 cosh(E)−2 cosh(E)−2E sinh(E)=6S(E)−3E2−2 (D6)

where S(E) is the series given by Eq. (3.16).

b5/2 involves the incomplete Gamma function C(0, E) which is related

to exponential integral functions by the following relations (32)

C(0, E)=E1(E), (D7)

En+1(E)=
1
n

(exp(−E)−EEn(E)) for n > 1. (D8)
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Thus, from E3C(0, E)−exp(−E)(E2−E+2)=−6E4(E) we get

E3C(0, E)−exp(−E)(E2−E+2)=E3 1−ln E−cE+
11
6 2−2+3E−3E2

+6 C
.

m=4

(−E)m

(m−3) m!
, (D9)

where it can be noted that

C
.

m=4

(−E)m

(m−3) m!
=S(E)−T(E) . (D10)

Inserting Eqs (D9) and (D10) in Eq. (D4) gives our expression of the

z5/2 coefficient in Eq. (3.18).
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